Project

General

Profile

Support #1271

Individual weights of those whose household questionnaires are not available

Added by Louise Luo 9 months ago. Updated 9 months ago.

Status:
Feedback
Priority:
Normal
Assignee:
Category:
Weights
Target version:
-
Start date:
11/12/2019
Due date:
% Done:

80%

Estimated time:

Description

Dear Officer,

According to my understanding, the individual weights take into account predicted household response probability. However, I find that the weights for those individuals whose household questionnaires (w_hhresp) are not available are not zero (e.g. people whose household ids are 1297691602 1362862802 1436119202 in wave 2). I am wondering how to model the household response probability when their household questionnaires are not available?

Best wishes,

Louise

History

#1 Updated by Stephanie Auty 9 months ago

  • Private changed from Yes to No
  • Assignee set to Olena Kaminska
  • Category set to Weights

#2 Updated by Olena Kaminska 9 months ago

Louise,

I have checked for you and for the households id's that you mentioned we provided b_psnenub_xw b_psnenus_lw b_psnenus_xw weights, the other weights have correctly the value of 0 as these households originate from UKHLS EMB sample.

Could you clarify what you are trying to do? Is your research related to creating weights / looking into nonresponse; or are you studying a substantive topic?

Thank you,
Olena

#3 Updated by Louise Luo 9 months ago

Hi Olena,

Thank you very much for your reply.

I am creating my own cross-sectional individual weights. I want to adopt the method similar to the one used to create b_indpxus_lw.

Correct me if I am wrong.

To create b_psnenus_lw, a_psnenus_xw is multiplied by an inverse probability. This inverse probability is predicted by logistic regression. The predictors are obtained from the household grid and household questionnaire. The household grid is in b_indall and the household questionnaire is in b_hhresp.

There are some households whose household questionnaires are not available (eg. b_hhresp does not include those households whose household id is 1297691602, 1362862802 and 1436119202). In this case, how to estimate the regression for these individuals whose household questionnaires are unavailable?

Louise

#4 Updated by Olena Kaminska 9 months ago

Louise,

Thank you. For these households I imputed the missing predictor values.

Best of luck,
Olena

#5 Updated by Louise Luo 9 months ago

Olena,

I see. Thank you very much.

Best wishes,

Louise

#6 Updated by Stephanie Auty 9 months ago

  • % Done changed from 0 to 80
  • Assignee changed from Olena Kaminska to Louise Luo
  • Status changed from New to Feedback

Also available in: Atom PDF